You are currently browsing the category archive for the ‘Mollusca’ category.

13807629384-shipworm-1_1024.jpg

When it comes to mollusks, people talk a lot about the charismatic giant squids and giant clams (and for good reason!), yet, to my mind, these are not the strangest—or even the most elusive–giant mollusks. Scientists have long sought a very different creature—the giant shipworm (Kuphus polythalamia)—which they knew from its bizarre meter long tubal shell. Yet despite the fact that such shells were (relatively) plentiful—marine biologists never found a living specimen…until this spring, when internet clips revealed footage of people eating huge shipworms in the Philippines. Researchers were thus led to a remote lagoon in the archipelago where at last they discovered living giant shipworms flourishing in the foul muck. What they then discovered was the most shocking thing of all…
38471080_401.jpg

But first let’s provide some context. Shipworms are bivalve mollusks (like clams, oysters, and mussels) which eat wood–a surprising amount of which finds its way into the oceans. Wood is extremely difficult to digest, since it contains lignins, cellulose, and such like tough organic polymers. Shipworms digest wood the same way beavers and elephants and termites do—with help from symbiotic bacteria. This made shipworms the bane of pre-industrial mariners (who counted on intact wooden hulls in order to remain alive).

But shipworms are small, and the giant shipworm is…giant. The fact that the giant shipworm is an insane 130 cm long cylindrical clam with a gun metal blue body and obscene flesh gills which lives in a huge calcium tusk the size (and shape) of a baseball bat is not at all the strangest aspect of the creature. What is most odd about this mollusk is how it eats: it doesn’t. The foul anaerobic slime at the bottom of that lagoon in the Philippines is rich in hydrogen sulfide from decaying organic matter.
wire-422545-1492585554-612_634x514.jpg

The giant shipworm doesn’t eat this decomposing matter (indeed, its mouth is all but vestigial). Instead it has bacteria in its gills which live upon hydrogen sulfide. The giant shipworm survives off of the byproducts of this bacterial respiration. It grows huge off of toxic gas. This strange metabolic cycle is of great interest to scientists for what it reveals bout symbiosis, adaptivity, and metabolism. Perhaps someday it will be useful as well. Maybe future generations of explorers will love giant shipworms for their ability to live on waste product gases just as much as vanished generations hated shipworms for eating ships.

00xxxx
I had a spring cold yesterday and I didn’t post. I’m feeling much better, but I would still like to finish this wonton soup and go to bed…maybe we’ll talk about politics another day when I am feeling stronger. To tide you over though, here are some more little flounder drawings that I have been making. You may think that because I have not posted any lately, I have stopped floundering, but that is not true…not true at all. I have been floundering at a much greater level.0Untitled-1
So I will let you look these over and see what you think, The one at the top is a psychedelic seventies flounder with sundry luscious fruit. The second flounder is apparently a flounder stealing into the alien undersea garden of love. Is Cupid aiming love’s arrow at the poor fish or is it a fishing spear? His back is studded with radiant jewels, so perhaps he is being hunted for cupidity.
00Untitled-1.jpg

Finally the last of these three was a Christmas present for my roommate who likes heavy metal. he asked for a black metal flounder–so I obliged him with pirate ships and demon babes and a jet black black ocean where this poor ghost flounder is free to rock out to his heart’s content. Let me know what you think and I’ll feature some more flatfish in the near future!

020170423_170019[1]
To celebrate the blossoming cherry tree, I made a big painting on cheap canvas and hung it beside the cherry tree. It’s a little hard to get the sense of the scale, but it is the largest work I have made on canvas.

The painting is an allegory of humankind’s place in the natural world (like most of my paintings). Against an ultramarine background, a giant glowing furnace monster is prancing on the back pf an aqua colored flounder. Inside the furnace chamber a little blossom person bursts into flames, powering the great contraption. Behind this tableau, a titan’s head festooned in weeds sinks into the mud (an amphora in the left corner is likewise settling into the muck). A cherry tree blooms against the night sky…along with a piece of kelp and a glass sponge. A goosefish watches the entire scene from the right foreground.
18119001_10154719797550958_7079662267346777892_n

0tttt.jpg

Sadly, I forgot to paint the giant clam which was supposed to be beneath the flounder. Fortunately there is a sad squid at left to represent the mollusks within the painting (although I am not sure why he is standing around). Although the work is less finished than I would like, I think it successfully combines humor with a certain wistful pathos. Let me know what you think (or if you have a wall which needs a giant mural).
18057688_10154717138290958_4575385301607092577_n.jpg

LongArmSquid.jpg

Once again Ferrebeekeeper plunges into the abyssal depths of the ocean seeking a bizarre and barely known cephalopod—the elbow squid.  Elbow squid, also colloquially known as “bigfin squid” are deep sea squid of the genus Magnapinna.  Although they have been known to science since at least 1907 when a juvenile specimen was found and categorized, the strange animals are a real enigma to scientists.  No adult specimens were known until the 1980s and only in the cotemporary era of widespread deep-sea robots were pictures of the living animals obtained.

article-2509830-19812e7f00000578-599_634x1193

But WHAT pictures! These images were worth the wait:  of all Earth creatures which are not microbes, the elbow squid may well be the most unfamiliar and alien in appearance.  Indeed, I have seen plenty artist’s conceptions of extraterrestrial life and precious few looked as bizarre as the elbow squid.  The animals have extremely long tentacles which dangle at right angles from 10 upper arms (which project at right angles from the squid’s cylindrical body.  The visual impact of this crazy arrangement is even more dramatic than it sounds.

hqdefault.jpg

Shell oil used a submersible robot to film a specimen hanging around their deep water oil platform “Perdido” (which is 200 miles offshore from Houston in the Gulf of Mexico) and the squid’s tentacles were reliably 9 to 10 meters (26-30 feet) long.  These animals are different from giant squid—but they are also giant squid.

So why on Earth do elbow squid have such long arms?  We simply do not know.  Some scientists speculate that it brushes along the ocean bottom gathering up sluggish meals with its long arms. Other mollusk theorists(?) think it is like a brittle starfish and lies on the bottom as the tentacles write around.  Yet another school believes the ten tentacles are for active predatory grabbing—the squid is like a fisherman with ten lassos.  Perhaps it combines these and other behaviors.  Other cephalopods are well known for being versatile and clever.

conv_300393.jpg

I would love to tell you about the hopes and fears of this strange denizen of the deeps.  What animals prey on it (Sperm whales and elephant seals presumably, but what else?)?  What is its love life like?  How long do they live?  But we don’t even know what these things eat.  How it would fill out a Zoosk profile is particularly beyond our kin.  The elbow squid is at the tantalizing juncture between the known and the unknown.  Undoubtedly we will learn more, but for now we will just have to be content that we have seen them at all.

440px-cameroceras_trentonese

Everybody loves squid, cuttlefish, and octopuses…and we all love all of the crazy belemnites, ammonites,  nautiloids, and orthocones which came before them. But, if you are like me, you have probably been sitting around wondering what came before that.  How old are cephalopods, really, and what were the first ones like?  Yet, although cephalopods are amply represented in the fossil record from the Ordovician onward, their very earliest origins are shrouded in controversy and mystery.  Although there are various fossils which might be cephalopods (or their antecedents) at present the oldest animals to be indisputably classified as cephalopods are the Ellesmerocerida.  This order of nautiloids flourished at the end of the Cambrian and into the Ordovician 9approximately half a billion years ago).

08-Ace13.gif

Although they were definitely cephalopods, the Ellesmerocerida were somewhat mysterious themselves.  They were typically quite small—or even minute.  They seemingly had ten arms–although this is a conjecture based on where the muscles attached to their shells (and based on what we know of their descendants).  The soft parts of the first cephalopods were not preserved and so we don’t exactly know.

Their shells reveal close-spaced septa–closed off interior spaces within the shell, which provided buoyancy.  The  Ellesmerocerida  also had relatively large ventral siphuncles—tissues which pass longitudinally through the septa to allow buoyancy control.  So the first cephalopods we know about were more or less built on the same line as the subsequent ones (until belemnites internalized the shells).  I wonder what else we will find out about the origins of this fascinating group of animals as we learn more about paleontology.

zwinter6

Here in the northern hemisphere, we’re moving to the darkest time of the year.  I don’t have any white robes or giant megaliths on hand to get us through the solstice, but I thought I might at least cheer up the gloomy darkness with some festive decorations!  As in years past, I put up my tree of life filled with animal life of the past and the present (see above).  This really is my sacred tree: I believe that all Earth life is part of a larger cohesive gestalt (yet not in a stupid supernatural way–in a real and literal way).  Looking at the world in review, I am not sure most people share this perspective, so we are going to be philosophizing more about our extended family in the coming year.  For right now though, lets just enjoy the colored lights and the Christmas trilobite, Christmas basilosaurus, and Christmas aardvark.

zdsc00608

I also decorated my favorite living tree–the ornamental cherry tree which lives in the back yard.  Even without its flowers or leaves it is still so beautiful.  I hope the shiny ornaments and toys add a bit of luster to it, but really I know its pulchritude is equally great at the end of January when it is naked even of ornaments.

zwinter5

Here are some Javanese masks which my grandfather bought in Indonesia in the 50s/60s. Indonesian culture is Muslim, but there is a deep foundation of Hinduism (the masks are heroes from the Mahabharata and folk heroes of medieval Indonesia).  Decorating this uneasy syncretism up for Christmas is almost nonsensical–and yet look at how good the combination looks.  Indeed, there might be another metaphor here.  We always need to keep looking for beautiful new combinations.

zwinter8

Finally here is a picture of the chandelier festooned with presents and hung with a great green bulb.  The present may be dark, but the seasons will go on shifting and there is always light, beauty, and generosity where you make it.  I’m going to be in and out, here, as we wrap up 2016 and make some resolutions for 2017.  I realize I have been an inconsistent blogger this year, but I have been doing the best I can to keep exploring the world on this space and that will continue as we go into next year. I treasure each and every one of you.  Thank you for reading and have a happy solstice.

oyster-004.jpg

So…hey…what ever happened to that attempt to repopulate Jamaica Bay with lovable good-hearted, filter-feedin’ oysters? Ummm…well…it turns out that the colony failed.  The poor oysters who made it to adulthood were unable to procreate (or, at least, their offspring were not able to attach to anything in Jamaica Bay).  Fortunately, the oysters’ human friends are not licked yet and have a whole new weird project afoot…but before we get to that, let’s turn back the clock and look at the bigger picture of oysters in our area!

New York was once renowned for its oysters.  By some estimates, up through the 1600s every other oyster in the world lived in New York’s harbors and bays!  During the early 19th century, every other oyster harvested in the world was certainly taken from these waters.  The oysters filtered the entire bay of algae, microbes, and pollutants.  They also prevented the harbor from eroding away—it was like the entire waterway was coated with hard calcium carbonate (in fact it was exactly like that).   Not only did the tough New York oysters prevent underwater erosion, they also stabilized the coastline and bore the brunt of storm surges.  What tremendous mollusks! But alas, we were too hungry and too greedy and too careless…. By the end of the 1800s the population had crashed.  Attempts to revive the poor oysters have consistently failed. (just follow that link up at the top).

image.jpeg

However ecologists, oceanographers, and oyster fanciers have not quit trying.  In fact with the aid of a variety of partners they are mounting the biggest attempt yet to restore Oysters to New York City’s bays and waterways. The New York Times details the agencies which have invested in the project:

The project is funded by a $1 million grant from the United States Interior Department’s Hurricane Sandy Coastal Resiliency Competitive Grant Program. The Environmental Protection Department, which is contributing $375,000, is working with the Billion Oyster Project, an ecosystem restoration and education project that is trying to restore one billion oysters to New York Harbor.

It is good to have money (I have heard), however, there is also a secret ingredient to this project.  New York’s education department has been replacing all of the NY Public School’s bathroom fixtures with environmentally efficient toilets.  The old porcelain toilets are being smashed to bits to form an artificial reef where the young oysters can get started.  Five thousand public school toilets have been broken up and added to the project.  These fixtures have served generations of New York’s humans in a necessary albeit lowly capacity.  Let us hope they can get a couple of generations of oysters up and going in their second career (as smashed detritus on the bottom of Jamaica Bay)!  We’ll report more as we know more so stay tuned.

nyc-oyster-bed-toilets-jamaica-bay.jpg

Pebas 17 Ma

The Amazon River is the world’s largest river and it has the world’s largest drainage basin—the vast Amazon rainforest, which stretches from the Andes in the west, to the Guiana Highlands to the north and the Brazilian Highlands in the south.   The great river drains east into the Atlantic Ocean….but it was not always so.  Before the Andes Mountains rose, the river drained west into the Pacific.  Throughout the Cenozoic, the mouth of the river moved up around the continent.  Thirteen million years ago, during the Miocene, the river drained north into the Caribbean through a huge tropical swamp–the Pebas mega-wetlands–which covered over one million square kilometers of what is now the Amazon Basin.

image_2536_1e-Miocene-Crocodiles

An illustration of Pebas Corocodilians–Gnatusuchus is underwater, gobbling clams (art by Javier Herbozo)

Like today’s Amazon Basin, the Pebas mega-wetland was a great riverine rainforest.  And yet the ecosystem was very different from what is there today.  The marshes and swamps were filled with bivalve mollusks that thrived in the oxygen-poor waters.  Predators evolved to feed on these clams and mussels…and what predators!  This is Gnatusuchus, a caiman with spherical teeth for crushing open shellfish. Can you imagine biting through the shell of a clam?  Just thinking about it makes my jaw hurt and my teeth feel broken.  Yet Gnatusuchus bit through heavy shells for every meal!

i-b18fea59cf6c7e35c7ccea0b3719fc12-Purussaurus

A life-sized reconstruction of the gigantic Purussaurus

The crocodilian grew to lengths of 1.5 meters (about 5 feet) and had a short round shovel-shaped mouth to focus maximum force on biting through clams.  Life in the Pebas was not all basking and clam feasts for Gnatusuchus.  The reptile was hardly the only reptile in the swamp, but was instead one genus among a hyper-diverse group of crocodilians including giant toothy predators capable of eating Gnatusuchus.  One of these predators, Purussaurus neivensis grew to be 12.5 metres (41 ft) in lengt—making it a rival of the great Mesozoic crocodilians like Phobosuchus (maybe I should have mentioned this horrifying monster first, instead of alluding to him after the clam-eater, but Ferrebeekeeper is interested in mollusks and their predators not in giant crocodiles: this is not Peter Pan, my friend).  There were also piscivorous crocodilians with long scissor snouts foll of hooked teeth (like modern gharials), and even little crocodilians on stilt-like legs that ran around plucking up small prey in the manner of pipers or herons.

anatosuchus-size

Seven million years ago, the Pebas began to change from swamps to channels as Amazonian drainage became spread through an even more enormous basin. Still, the diversity of the creature that lived there became a heritage for the contemporary Amazon, arguably the most diverse ecosystem in the world today.

Cockerel Cycle

Cockerel Cycle and French Cruller (Wayne Ferrebee, 2014, oil on panel)

It’s National Doughnut Day!  To celebrate, here are two paintings from my Microcosmic Doughnut Series.  Topologists and astrophysicists posit that our universe has a toroid shape—so I have combined my disparate background in history, toymaking, natural history, and Flemish-style painting to craft doughnut-shaped microcosms. Within these intricate cosmological confections, people and animals from throughout time converge in a never-ending circle—in the manner of the water cycle, the Krebs diagram, or an ouroboros.  Thus the individual elements in these paintings not only have metaphorical significance, they are also part of a dynamic larger picture.  Each landscape of dynamically intertwined symbols represents the cycles within individual life, history, or biology.   Each little doughnut painting is its own self-contained world; yet, taken in aggregate, the individual stories of predators and prey, metabolism, historicism, world trade, or biorhythms of organisms signify even larger cycles of creation and destruction not readily discernible from the fixed perspective of an individual life.  For example, the one above is about a classical French bon-vivant…or maybe it is about frogs or about cocks or chicken eggs.  There is also a fertility aspect to it (not to mention a French cruller in the middle).

Furnacemandonut

Furnace Doughnut (Wayne Ferrebee, 2015, oil on panel)

This second painting is less easily explained.  A variety of brightly colored synthetic organisms fly up out of a baker’s furnace.  Above the mysterious swarm, a humanoid figure in an asbestos suit and a blue-hot dragon spray fire on a salamander which basks in the radiant pure energy.  Blue-black gothic stoves dance around beneath the centerpiece of the composition: a glowing lava doughnut congealing out of the primal kitchen…or is it just a delicious glazed doughnut with chocolate icing and an orange squiggle?  The whole scene makes me hungry for cheap baked pastries…and for raw creation.  Now I’m off to paint some more.  Let me know what you think (and enjoy Doughnut Day with your loved ones).

 

ordovician_by_mirelai

Ordovician(by mirelai from Deviant Art)

In a long-ago post, Ferrebeekeeper wrote about the Ordovician–the age of mollusks–when big predatory cephalopods and gastropods overtopped nascent vertebrates as the apex predators of the world oceans.  Cephalopods are fiercely intelligent, incredibly fast, and astonishing at camouflage.  They can be infinitesimally small or remarkably large.  They can even be transparent.  However they don’t last well—they are squishy and even if they aren’t eaten they have very short lives.  One of the most vivid memories of my adolescence was watching cuttlefish hover and change colors and feed with bullet-fast grabber arms at the National Zoo.  The memory comes with a dark post-script.  I returned a few months later with friends, only to find that the cuttlefish had entered a bizarre unnatural senescence and were literally falling apart at the seams.  They do not die of old age in the ocean; something always eats them.

istock_000020763554_small

But this is no longer the lovely Holocene with its oceans full of fish and skies full of birds.  We have entered the Anthropocene—an age of hot acid oceans filled with Japanese trawlers bent on catching every last fish in the sea by means of nets the size of Rhode Island.  Suddenly it is not so beneficial to be a big bony ancient fish with hard scales and sharp teeth.  The teleosts and the cartilaginous fish are being physically pulled out of the ocean by humans.  It takes them too long to reproduce and rebuild their numbers (even as national governments subsidize fishermen to build more and larger fishing boats).  The age of fish—which has lasted from the Devonian (420 million years ago) until now—is ending.  So a new scramble to exploit the great open niches in the seas is beginning.

school-of-squid.jpg

Unexpected life forms are flourishing.  The sea floors are filling up with lobsters, which have not been so prevalent in a long time.  Giant jellyfish are appearing in never-before-seen numbers.  However it is beginning to seem like the greatest beneficiaries may be the cephalopods. Mollusks with shells are having their own troubles–as the carbonic acid oceans eat at their calcium shells, but the octopus, squid, and cuttlefish have no such problems.  Not only are they well suited for tropical waters, they rcan also reproduce so fast that they can keep ahead of human’s bottomless appetite.  A single squid egg cluster can have millions of eggs inside.

blanket-octopus-3.jpg

Cephalopods tend to be generalists—they eat all sorts of things including booming micro-invertebrates and jellyfish. They are clever enough and malleable enough to slip out of all sorts of hazards.  Their swift lives are a boon. Because they reproduce so quickly and prolifically, they evolve quickly too—a necessity in our 24 hour world (as all sorts of out-of-work journalists, lamp lighters, factory workers, and saddlemakers could tell you).  I wonder if in a few million years the waters will glow with great shoals of exotic tentacle beasts we have scarcely imagined.  Will there be fast marlin-type squids with rapiers on their mantles and huge whale-shark type octopuses skimming the phytoplankton with their own giant nets? Will the skies darken with flying squids and the sea floor change colors as tens of thousands of cuttlefish take the roles of reef fish and reef alike?

1020_lg2

Hawaiian bobtail squid (image from forums.furcadia.com)

It is possible.  The world is changing faster than we would like to admit—becoming something brand new—becoming something very old.

images

Ye Olde Ferrebeekeeper Archives

June 2017
M T W T F S S
« May    
 1234
567891011
12131415161718
19202122232425
2627282930