You are currently browsing the tag archive for the ‘fossils’ tag.

Paleontologists argue about which living organisms were first. In exchange, we living organisms get to argue about who was the the first paleontologist. There are many potential answers: the Greek philosophers/natural scientists Xenophanes, Herodotus, & Eratosthenes all wrote about fossils and recognized that parts of the land were once under water. Likewise the Roman geographer Strabo theorized about volcanism, subduction, and, most importantly, deposition. Pliny labored to apprehend the relationships between living creatures (and how they related to vanished or mythological beasts). A Medieval Perisan Ibn Sina (known as Avicenna in Europe) came up with a theory concerning the petrification of living things while the Chinese naturalist Shen Kuo recognized that climate and ecology changed over time (based on his studies of petrified bamboo).

However, to my eyes, the first paleontologist was an altogether more peculiar figure–a Baroque Danish polymath named Nicolas Steno who lived from 1638 to 1686. The son of a goldsmith, Steno moved through the scintillant aristocratic courts of Northern Europe in his era and thus knew Spinoza, de Graaf Ruysch, Lister, and Bourdelot (along with lots of aristocrats and churchmen who were probably all-important for securing patronage back then but about whom we are no longer obliged to care). As you can probably tell from the list of names I have given, Steno was dirst an anatomist, and it is through a strange quirk of dissection that he made a name for himself as a geology/paleontology pioneer.

In 1666 two Ligurian fishermen caught a colossal shark which they presented to the Grand Duke of Tuscany, Ferdinando II de’ Medici, who had the presence of mind to order it sent to Steno for dissection. Steno dissected the shark’s head and discovered that its teeth were extremely similar to stony objects discovered within the earth (then known as “tongue stones” but now called “fossilized shark teeth”). These mysterious triangles were once thought to have been hidden by imps or to have fallen from the moon. Steno recognized they came from sharks (perhaps giant sharks killed by the Biblical flood ?) and he devised a hypothesis for how they further came to be inside of rocks. Steno devised a theory of stratigraphy (a discipline of which he is arguably the founder). His four principles of stratigraphy laid the bedrock (heh heh heh) for Lyell, Hutton, and Darwin to piece together an accurate record of events on Earth. These four principles are:

  1. the law of superposition (older layers lie beneath more recent layers…just like upon a cluttered desk)
  2. the principle of original horizontality: (thanks to gravity, layers are horizontal when deposited)
  3. the principle of lateral continuity: (layers within a basin extend in all directions according to the manner and order of their deposition and are contiguous)
  4. the principle of cross-cutting relationships: if a disconuity cuts through a layer, it must be more recent than the strata

These principles seem childishly obvious to anyone who has ever made a sand sculpture–and they are in fact beautifully brilliantly obvious. Yet nobody had stated them together in the context of natural history or applied them properly to the stones beneath us. Indeed it would take another hundred years for scientific consensus to grasp their astonishing power and scope.

Sadly, Steno became interested in theological conundrums (and in the worldly power of the church). He converted to Catholicism and was ordained a priest. Soon he became involved in the counter reformation (where he found a new role arguing with Leibniz and censoring Spinoza). Thanks to his self-abnegating piety and devotion he was even raised to the rank of auxiliary bishop. His story becomes filled with weird hagiographic details like how he sold the bishop’s ring and cross to help the poor and how he ate so little that he, um died.

Steno was not unique among geology pioneers in being a churchman. However he is unique in that he has been beatified (Pope John Paul beatified him in 1988). According to the tenants of Catholicism, if you pray to Nicolas Steno he can intercede upon your behalf in heaven! However I recommend that you do not pay attention to such holy claptrap, but instead keep looking at interesting rocks and cool fish. That is where the real beatification occurs.

50169630453_a7335051bf_k

What with all of the excitement in the world, it is easy to lose sight of the bigger picture…and of good things which are still happening during these troubled times.  This morning at 7:50 a.m. EDT, NASA launched an Atlas V-541 rocket from Cape Canaveral Space Launch Complex 41.  On board the rocket is a Martian lander containing the most sophisticated Martian rover yet “Perseverance” along with its robotic helicopter sidekick “Ingenuity.”

helicopter_landing_composite_crop-web-1

Artist’s Conception of Perseverance and Ingenuity on Mars

If the mission continues to go according to plan, the lander will reach Mars in February 2021.  Coincidentally, Mars will be crowded that month, since a Chinese orbiter & lander, and a UAE orbiter are also slated to arrive.  After much trial-and-error, I have faith in NASA’s sky crane landing system but it will be most interesting to see if the Chinese rover can “stick the landing”or if it is eaten by the ghosts of Mars (I hope not: humankind needs the Chinese data too, and NASA needs some competition to keep the creative juices and the congressional funding flowing).

The ultimate destination of the Mars 2020 mission is the Jezero Crater, a nearly circular crater 49 km (30 miles) in diameter.  The ancient crater is now partially filled with sediments–including a fan delta of ancient clays.  It is believed that if evidence of ancient life is to be found anywhere on Mars this is as likely a place as any to discover the ancient fossils.

Untitled-2

Jezero Crater

Perseverance  has onboard a 4.8 kilograms (11 lb) pellet of plutonium dioxide which will provide the vehicle (and the miniature helicopter) with abundant energy for traveling, communicating with orbiters/Earth, assaying rocks, and operating a core drill for gathering geological samples of ancient Martian rock.  Additionally the rover will conduct material experiments concerning the potential toxicity of Martian dust and the production of pure oxygen from Martian atmospheric CO2.  Perhaps most excitingly, the rover will also carefully organize and cache the precious samples it gathers in preparation for a future retrieval mission.  Such a mission would involve landing, building and launching a Mars ascent vehicle from the Martian surface up to our proposed next generation Mars orbiter which would then load the samples on am Earthbound craft.  So the Mars 2020 mission is a tremendous step towards discovering whether life ever gained a toehold on Mars AND towards building next-generation space faring capabilities (for the dull and incurious earthcentric crowd that always decries space exploration–as though Earth is located somewhere other than space!– it should be noted that such engineering breakthroughs generally confer military, technological, and economic supremacy here).

1920px-Diagram_of_the_perseverance_rover-instruments

Also, special thanks to our brilliant Norwegian, Spanish, French, and Italian friends!

So best wishes for the entire armada which has left our planet this month headed for Mars, but particular good wishes to Perseverance and Ingenuity!  Let’s hope we can discover some perveverance here to make it all the way to February 2021 (right now that sounds like it might as well be some HG Wells date in the impossible future).

800px-Mary_Anning_painting

Happy Birthday to Mary Anning (21 May 1799 – 9 March 1847).  Mary’s life was a difficult one.  Her father was a poor cabinet-maker in Lyme Regis (a coastal town in Dorset, England) who supplemented his income by selling strange petrified shells and stone bullets which he pried out of a nearby sea cliff.  Mary’s parents had ten children, but only Mary and her brother survived past early childhood.  Her name was a hand-me-down from an older sister who had burned to death at the age of four.  When Mary was 15 months old, she and three neighbors were under a tree when it was struck by lightning and only Mary survived.  Her father died while Mary and her brother were young and they kept the family afloat by selling curiosities pried from the sea cliffs.  This was dangerous business: Mary’s beloved terrier Tray was crushed in a rockslide (he’s up there sleeping with the ammonites in the painting) and Mary narrowly avoided this fate herself on multiple occasions.  Additionally, living so close to the sea carried further perils: the family nearly drowned from a flood during a great storm.  Mary Anning died of breast cancer at the age of 47.  Her final years were marked by agonizing pain from the condition which she self-treated with laudanum (which caused the community to gossip about her morals).

This is a pretty bleak biography (although in no way atypical for a working-class woman from early industrial Great Britain).  So why are we writing about Mary 172 years after her death anyway? Mary Anning was a great pioneer of paleontology, geology, ichthyology, ecology, and invertebrate zoology.  The luminaries of the English geology community relied on her indomitable fieldwork to frame their conclusions about the history of living things and to stock their museums with specimens. Mary was a religious dissenter and the daughter of a cabinet-maker in an age when geology was the near-exclusive preserve of well-to-do Anglican gentlefolk (the Geological Society of London did not even allow women to attend meetings as guests).  Yet she kept informed of the scientific literature of her day and she dissected fish and invertebrates as to better understand the nature of her excavations and discoveries. Above all, Mary Anning actually discovered the fossils which others wrote about–so she had insights and knowledge which were occluded from armchair scholars. Charles Lyell (the father of geology) wrote to her asking her opinions about cliff erosion.  Mary proposed a theory to William Buckland that some of the fossils she discovered were ingested by ichthyosaurs and the remains excreted (a concept which fascinated Buckland and became the central focus of his work). In a fair world she would have an alphabet of letters after her name and be immortalized as a statue on a plinth beside the statues of Darwin and Lyell.  Even in our fallen world, she is revered as one of the founders of the natural history and life science disciplines (although many biographies about her concentrate on the sad exigencies of her life rather than on the extraordinary discoveries she made, a tradition which I have somewhat followed).

The cliffs which Mary relied on for specimens were part of a geological formation known as the Blue Lias. These layers of limestone and shale were a shallow seabed of the Tethys Ocean during the Jurassic period (about 210–195 million years ago).  The curlicues and stone bullets were fossil ammonites and belemnites, but Mary had a knack for finding the much rarer remains of hitherto unknown creatures such as ichthyosaurs, pterosaurs, plesiosaurs and other ancient marine fauna.

In the early 19th century a debate was raging between learned churchmen who knew for certain that God’s perfect creation could never be diminished and gentlemen geologists who believed that there had once been animals which were gone from earth…”extinct” as they called this new concept.   Mary’s fossils of bizarre giant sea crocodiles and lizard dolphins gave concrete evidence to the ur-paleontologists (who were indeed proven right).  Her discoveries were seminal for the discovery of paleontology itself and paved the way to the understanding that the world’s ecosystems were once very different indeed from what they are like now.   These pieces of knowledge helped towards an understanding of the true age of the Earth and ultimately made Darwin’s discoveries possible.

jurassicmary

Here is another painting of Mary, by the greatest living fish-artist, Ray Troll.  Troll shows Mary with fleshed-out versions of the creatures she discovered (note the ichthyosaur swallowing an ammonite).  We owe an enormous debt to Mary Anning.  Her contributions were under-appreciated in her day (when only the most learned gentleman scientists…and Mary… had inklings of the real nature of natural history and what her super sea-monsters connoted ), but those discoveries undergird our understanding the nature of the planet and of life itself.

 

The animals and plants of the Oligocene rainforest at Riversleigh (as envisioned by an artist)

The animals and plants of the Oligocene rainforest at Riversleigh (as envisioned by an artist)

Occasionally in the geological past, extraordinary circumstances resulted in the near-perfect preservation of an entire ecosystem.  These astonishing fossil beds are known as Lagerstätten (one of the first such finds was in Germany) and they provide one of the best sources of information about life on this planet.  A particularly rich Lagerstätten is located in the arid scrubland of Riversleigh in northwest Queensland, Australia: there fossils from the Oligocene and Miocene epochs are preserved in uncompressed limestone (which allows paleontologists to recover 3 dimensional skeletal remains).  During the late Oligocene, Riversleigh was a lush and vibrant rainforest filled with an incredible profusion of bizarre life forms.  When the Oligocene ended, the region dried into grasslands (and the climate continued to dry out further in subsequent epochs until the present, when the area is a near desert).

The giant carnivorous platypus (Obdurodon tharalkooschild)

The giant carnivorous platypus (Obdurodon tharalkooschild)

All of this is backstory to a remarkable recent discovery.  This week paleontologists studying the bats, snakes, and strange tropical marsupials of Riversleigh made an unexpected discovery–a giant hunting platypus twice the size of the living species.  This big predator, Obdurodon tharalkooschild, was a formidable meter long (3 foot) creature with sharp teeth for grabbing crayfish, amphibians, aquatic reptiles, and fish.  The newly discovered platypus lived in the long-lost rainforests of Queensland.  It was a generalist with a much larger diet than the somewhat specialized modern platypus.

No, not that much larger!

No, it wasn’t THAT big…

Monotremes (platypuses & the more recently evolved echidnas) are an extremely ancient branch of mammalian life which date back at least to the Jurassic–and more likely to the Triassic epoch or earlier.  Platypuses are believed to have evolved in what is now South America and then spread to Antarctica and finally to Australia.  The amazing giant hunting platypus indicates that there were hitherto unexpected branches of platypus evolution. I wonder if  Obdurodon tharalkooschild was toxic (like the modern platypus).  I also wonder what strange monotreme fossils lie beneath the ancient ice of Antarctica.

spd_20090210193213_b

My favorite mammals are the mighty proboscideans—elephants, mammoths, mastodons, gomphotheres, moeritheriums, and so on.  I have not written about them more because the only proboscideans we know a lot about are the elephants–and elephants are complicated—they are smart and they have human length lives of great social complexity, all of which makes them hard to write about.  Additionally elephants are tragic—their populations keep shrinking away as humankind grasps for ever more land and poachers kill the great sentient giants for their ivory.  Yet elephants still have a perilous chance to keep on living. What is even sadder than the senseless slaughter of the magnificent elephants are the other proboscideans, which have vanished one by one from earth.  Everyone knows about the woolly mammoth and Cuvieronius, the new world gomphothere, but the last non-elephant proboscideans to have died out were even more contemporary.

Stegodon2

The stegodons (from the extinct subfamily Stegodontinae) evolved in Southeast Asia approximately eleven and half million years ago.  They lived in large swaths of Asia throughout the Pliocene and Pleistocene epochs and they survived in Indonesia deep into the Holocene epoch. Radio-carbon dating has dated the last living stegodons to 2,150 BC.  The giants died after the pyramids were built at Giza and great cities had begun to sprout up in Mesopotamia and along the Indus valley.

Stegodons looked much like elephants—a resemblance which has caused much taxonomical confusion. Paleontologists once believed elephants descended from stegondons but It seems now that both stegodons and modern elephants descended from Gomphotheriidae (a sister group to the mammoths).   Stegodons had different molars and their tusks were so close together that their long trunks draped over the sides. There were many species of stegodons, the largest of which were among the largest of proboscideans, far more immense than today’s two elephant species.  The biggest stegodont were 4 m (13 ft) high at the shoulders and had a body length of 8 m (26 ft) which does not even count their 3 meter (10 foot) tusks!

 

800px-Elephantidae-scale.svg

 

Modern humans reached Southeast Asia 50,000 years ago so we lived in proximity with the stegodons for some time before they vanished.   Certain species of stegodons reached isolated Indonesian islands where, over generations, they shrank into dwarf forms.  These tiny stegodons were hunted by Homo floresiensis, which seems to have been a dwarf species of human (although the scientific community has not reached consensus concerning the nature of Homo floresiensis).  Imagining tiny versions of humans hunting tiny versions of huge elephant-like creatures boggles the mind!  I am profoundly sorry the stegodons dwarf, giant, or otherwise could not have held on for a few more millennia.  I would love to have seen them—or by 4000 years ago were they already as the Saola is now—ever retreating from a world that did not seem to fit them?

800px-Stegodon_ganesa

Wadi Al-Hitan, Egypt

In the desolate desert 150 kilometers southwest of Cairo there is a fearsome arid valley (wadi) of cliffs, carved buttes, and sandblasted erratic boulders.  The bleached landscape has an otherworldly emptiness as though it were located on a lifeless alien planet, though if you look closely, the desert is filled with austere furtive life like dorcas gazelles, tiny sand colored lizards, cobras, scorpions, and fennec foxes. The name of the place is even more otherworldly—“Wadi Al-Hitan” which is Arabic for “valley of the whales” and although the great smooth rocks buckling out of the sand might momentarily be taken for the backs of huge whales, the utter absence of the ocean (or of water of any kind) makes the name seem fanciful. The nearby Mount Garet Gohannam (which means mountain of hell because of the way it glows like flames at sunset) seems to be more aptly named.

Whale fossil at Wadi Al-Hitan

However the name of Wadi Al-Hitan is remarkably literal–for the valley contains the remains of hundreds of huge ancient cetaceans which died in the Eocene and were fossilized in the yellowish sandstone.  Forty million years ago the valley was a marine lagoon.  Although the remains of numerous sirenians, sawfish, sharks, rays, sea turtles, marine crocodiles, sea snakes, and even swamp dwelling moeritheriums have been discovered in the wadi, the valley takes its name from the most spectacular and numerous fossils which belong to four different species of primitive whales.  The most commonly discovered fossils belong to Dorudon, which was 3-5 meters long (9-15 feet) and fed on fish and mollusks, and to Basilosaurus, which was 15-22 meter (50-72 foot) and fed on everything else in the ocean.

Basilosaurus was first discovered in Louisiana in the early 19th century.  Its immense size and serpentine form initially convinced naturalists that it was a marine reptile and they misnamed the creature Basilosaurus (which means “king lizard”).  The mistake soon became obvious and Basilosaurus was classified among the Archaeoceti, a paraphyletic suborder of the cetaceans, however the giant kept its dinosaur name.  Different species of Basilosaurus flourished in oceans worldwide during the wet, tropical Eocene and, even though they were obviously very adept at ocean living (indeed rising to the top of the food chain) the creatures betray vestiges of terrestrial living which modern whales have entirely dispensed with. Not only do Basilosaurus fossils have teeth and jaws which retain reatures from their artiodactyl ancestors, they also have tiny vestigial back legs a mere half meter in length (which would scarely help a 22 meter animal get around).  Additionally Basilosaurus was different from modern whales in that it probably moved with eel-like horizontal thrashing of its long tail (modern whales move their flukes vertically).  Basilosaurus probably did not dive very deeply, but moved about near the surface of the oceans hunting for smaller marine animals.

Basilosaurus from “Life in the Ancient Seas Exhibit” at the Smithsonian Institution, National Museum of Natural History

Although Wadi Al-Hitan was discovered by Europeans in 1902-1903, some archaeologists and anthropologists have speculated that it was known long before that and have been irresistibly drawn towards comparing basilosaurus with the giant crocodiles and earth spanning serpent gods which populate ancient Egyptian cosmology.

Detail from painting (Life in the Ancient Seas Exhibit: Smithsonian Institution, National Museum of Natural History)

A few weeks ago Ferrebeekeeper featured a post about belemnites, extinct cephalopods from the Mesozoic which teemed in immense schools through the reptile-haunted oceans of that bygone era.  Yet belemnites were certainly not the only cephalopods which swam in the Mesozoic seas.  Numerous shelled cephalopods—the ammonites—were widespread in every sort of marine habitat.  Ammonites are personal favorites of mine so I am not going to write a comprehensive explanation/description of the subclass.  Instead I wish to provide you with an idea of how big ammonites could get by providing a few pictures of large ammonite fossils which have been discovered.   Imagine these monsters jetting through the water with huge tentacles and big intelligent eyes scanning for giant predatory reptiles and you will have a better idea of the Mesozoic Oceans!

This one is only .7 meters (two feet) in Diameter but it sure is pretty.

Ye Olde Ferrebeekeeper Archives

May 2024
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031