You are currently browsing the tag archive for the ‘stars’ tag.

One of life’s disappointments is the dearth of fine art concerning outer space.  Outer space is vast beyond imagining: it contains everything known. Indeed, we live in space (albeit on a little blue planet hurtling around an obscure yellow star)–but cosmic wonders do not seem to have called out to the greatest artists of the past as much as religious or earthly subjects. There are of course many commercial illustrations featuring the elements of science fiction: starships, ringed planets, exploding suns, and tentacled aliens (all of which I like) and there are also didactic scientific illustrations, which attempt to show binary stars, ring galaxies, quasars and other celestial subjects.  Yet only rarely does a fine artist turn his eyes towards the heavens, and it is even less frequent that such a work captures the magnificence and enormity of astronomy.

Fortunately the Dutch artist MC Escher was such an artist.  His space-themed engravings utilize religious, architectural, and biological elements in order to give a sense of scale and mystery.  The familiar architecture and subjects are transcended and eclipsed by the enormity of the cosmic subjects.  Here are two of his woodcuts which directly concern outer space.

The Dream (Mantis Religiosa) (M.C. Escher, 1935, wood engraving)

The first print is a wood engraving entitled The Dream (Mantis Religiosa) shows a fallen bishop stretched on a catafalque as a huge otherworldly praying mantis stands on his chest (the whole work is a sort of pun on the mantis’ taxonomical name Mantis religiosa “the religious mantis”.  The buildings arround the bishop and the bug are dissipating to reveal the wonders of the night sky. The bishop’s world of religious mysteries and social control are vanishing in the face of his death.  Greater mysteries are coming to life and beckoning the anxious viewer.

Another World (M. C. Escher, 1947, colored woodcut)

The colored woodcut “Other World” shows a simurgh standing above, below and in front of the viewer in a spatially impossible gazebo on an alien world.  The simurgh is a mythical animal from ancient Persian literature and art which combines human and avian elements.  Sufi mystics sometimes utilize the simurgh as a metaphor for the unknowable nature of divinity.  Yet here the simurgh is dwarfed by the craters beneath him and by the planetary rings filling up the sky above.  A strange horn hangs above, below, and to the side of the viewer.  Perhaps it is a shofar from ancient Judea or a cornucopia from the great goat Amalthea.  Whatever the case, the viewer has become unfixed in mathematical space and is simultaneously looking at the world from many different vantage points.  A galaxy hangs in the sky above as a reminder of the viewer’s insignificance.

Above all it is Escher’s manipulation of spatial constructs within his art that makes the viewer realize the mathematical mysteries which we are daily enmeshed in.  The multidimensional geometric oddities rendered by Escher’s steady hand in two dimensions characterize a universe which contains both order and mystery.  Giant bugs and bird/human hybrids are only symbols of our quest to learn the underpinnings of the firmament. Escher’s art is one of the few places where science and art go together hand in hand as partners. This synthesis gives a lasting greatness to his artwork, which are undiminished by popularity and mass reproduction.


Sirius, located in the constellation Canis Majoris

The brightest star in the night sky is Sirius.  Only 8.6 million light years from Earth, Sirius A is 25 times more luminous than the sun.  Because of its brightness, the star was well known in ancient times—it was named Sopdet in Ancient Egypt and it was the basis of the Egyptian calendar.  After a 70-day absence from the skies Sirius (or Sopdet) first became visible just before sunrise near the Summer solstice—just prior to the annual Nile floods.   Greek and Roman astronomers philosophized and speculated about Sirius, (which they called “the dog star” because of its closeness to the constellation Canis Majoris).  Arabs knew the star as Aschere “the leader”.  Polynesians used it as a principle focus of their astonishing oceanic navigation.  Over countless millennia, Sirius has worked its way deep into human consciousness as one of the immutable landmarks of the night sky.

Hieroglyph of Sirius/Sopdet

So imagine the shock when it was discovered that Sirius is not alone.  The bright star we know is actually Sirius A, a star with twice the mass of the sun. In 1844 the German astronomer Friedrich Bessel hypothesized a tiny companion for Sirius based on the irregular proper motion of Sirius.  Then, in 1862, as the American Civil war was being fought an American astronomer in Chicago first observed the tiny companion, Sirius B (thereafter affectionately known as “the Pup”). Sirius B has nearly the same mass as the sun (.98 solar mass) but it is only 12,000 kilometers (7,500 mi) in diameter—nearly the same distance around as Earth.

An Artist's Conception of Sirius A and Sirius B

Today Sirius B is the closest white dwarf star to planet Earth.  However it has not always been so, Sirius B began its life as a luminous blue B-type main sequence star with a mass five times that of the sun. About 124 million years ago—as the dinosaurs grazed on the first magnolias—Sirius B fused its way through the hydrogen and helium in its mass.  As Sirius B began to fuse together larger elements like oxygen and carbon it expanded into a red giant star with a diameter 10 to 100 times that of the sun. Then Sirius B ran out of nuclear fuel.  Without the heat generated by nuclear fusion to support it, the star underwent gravitational collapse and shrank into a hyper dense white dwarf star.  These tiny stars are extremely dense and hot when they are formed, but since they generate no new energy their heat and radiance gradually radiate away over billions of years until the stars are completely black and dead.

Not this sort of "White Dwarf"--Curse you Google Image Search!

Although Sirius B is largely composed of a carbon-oxygen mixture, its core is overlaid by an envelope of lighter elements. Hydrogen, being lightest, forms the outermost layer (which is why the little star currently appears uniformly white).

Years ago, when I first moved to New York and was a bright optimistic young person, I would travel around the city via subway.  Every day I entered and left the same entrance to the same underground train stop.  One day somebody dropped a bag of cheap glitter stars right by the exit.  These stars were different colors and different shapes.  They started as a glittering clump at the top of the stairs but thanks to foot traffic and weather, they quickly got everywhere.   Blocks away one would come upon glistening stars dotted along the sidewalk.

Then the stars began to fade and deteriorate.  Their shininess wore off in the rain. Their arms broke as people walked on them, but every once in a while you would see one that had caught in a protected location and survived.  Eventually there were no glitter stars left at all, but I suppose that the stuff they are made out of—bits of plastic and metal foil—is still out there in a landfill, or running down through drains into the ocean, or just blowing in the wind.

I mention all of this because it is a poignant metaphor for the currently projected fate of the expanding universe.  The ultimate destiny of the universe was once a problem relegated to theologians and mystics (and crazy people).  However, when cosmologists fathomed how the universe began–with the big bang 13 plus billion years ago–the question of how the universe would end became a legitimate scientific topic.   Edwin Hubble’s discovery that the universe was expanding provided an ominous hint as to the ending.

The way the universe will end is contingent on whether the momentum of the universe’s expansion is greater than the force of gravity (which in turn depends on the amount of matter in the universe and the density of that matter).  The current scientific consensus–based on carefully considered estimates of the universe’s mass density and on the most recently observed rate of cosmic expansion—is that the universe will continue to expand indefinitely.

Physicists, astronomers, and cosmologists therefore now project a rather glum fate for everything that exists. The death of the universe is divided into 4 stages summarized below:

Stelliferous: (Now to 100 trillion years into the future) This is an era teaming with stars: great masses of matter coalesce together into stellar masses and begin fusing together and releasing all sorts of energy as they do so.  Bit by bit though the brightest stars will wink out and only long-lived red dwarfs will remain.

Degenerate (100 trillion to 1037 years in the future) After even the red dwarfs fade into darkness, most of the universe’s mass will remain in the dying husks of stars, or in the remains of more exotic stellar death (black holes left by the destruction of super massive stars,  neutron stars, and white dwarfs). Electromagnetic energy in the Degenerate era will be generated by particle annihilation and proton decay rather than stellar fusion.

Black Hole Era (1038 to 10100 years into the future) After protons all decay away from the universe, the only large objects creating energy will be black holes which will themselves slowly evaporate into exotic matter over a vast expanse of empty time.

Dark Era (10100 years into the future to eternity) Protons and black holes will be gone and only the effluvia radiation from their passing will still exists in the universe.  All that remains will be photons of immense wavelength, neutrinos, positrons, and electrons–sad burned-out remnants which lack any order or meaning.  The universe will be incredibly vast, a horrible dark cold broken thing and it will remain that way forever.

So there you have it.  The fate of the universe is to slowly freeze and decay over trillions and trillions of years and then dissipate away into dark nothingness over eternity.

Of course 10100 years is a very long time indeed.  There is still plenty of time for beach parties and flower gardening, but this is not the end I would have wanted for anything I esteem as much as the universe. There isn’t much I can do about it though, except to hope that some unknown aspect of the cosmos provides a more spectacular and fiery end or that Vishnu intervenes.  Or maybe there is a multiverse in which our cosmos floats like an abstract bubble:  in the past, every time we thought we understood the universe it turned out that we were only looking at a small part of a greater whole.  It wouldn’t surprise me if something still eludes us.

"Vishnu, you out there buddy? Some help?"

Ye Olde Ferrebeekeeper Archives

June 2023