You are currently browsing the tag archive for the ‘pest’ tag.

Clouds of reef fish and corals at Papahānaumokuākea Marine National Monument.

Clouds of reef fish and corals at Papahānaumokuākea Marine National Monument.

I know I just did a post on National Donut Day, but that piece was both tongue-and-cheek and nakedly self-interested.  Clearly donuts are ephemera with transient importance—scraps of fried dough which stay tasty for less time than flowers bloom (indeed I enjoy juxtaposing their cheap impermanence with the vast seemingly eternal universe in my paintings).  Today I looked at my calendar to find that June 8th is World Oceans Day!  Unlike National Donut Day (which is self-evidently a meretricious marketing “holiday”), World Oceans Day strikes me as an important and worthwhile day of observance.  The ancients celebrated the oceans with festivals and sacrifices to venerate the sea gods.  We tend to regard the oceans as an inexhaustible source of cheap fish and a place to dump our rubbish.  I worry that the careless industrialized spoiliation of the oceans is the gravest mistake humankind is currently making (and we have our grubby grasping fingers in lots and lots of pies—and are making plenty of errors).  Yet, I don’t want this blog to become an angry jeremiad or an environmentalist harangue.  I want to celebrate the beauty and grace of the oceans and their inhabitants while also underlining the stress and danger which these vast swaths of the world are facing.  What to do?

An infestation of Crown-of-Thorns Starfish

An infestation of Crown-of-Thorns Starfish

For World Ocean Day therefore I am writing about the lifeform which, to me, most exemplifies the oceans of the late Holocene/early Anthropocene, the crown-of-thorns starfish, Acanthaster planci. This echinoderm is a ravenous poisonous destroyer which is exploiting the sickness of the oceans to proliferate and succeed wildly (at the expense of everything else).  It is an amoral ravenous monster covered with toxic spines which is eating the coral seas bare.  It is also a beautiful creature magnificently evolved to thrive—we can hardly hold its horrifying success against it.  Maybe it should be on the cover of Forbes smoking a cigar and bloviating about its philosophy of success.  By chance the starfish also lies at an intersection of many blog topics—crowns, invaders, colors, poison, mollusks (for its fate is connected with that of predatory mollusks), opinion, and science…perhaps even “deities of the underworld”.  This is a lot of introduction…let’s meet our antihero!

Crown of Thorns (Acanthaster planci) photo by jon hanson

Crown of Thorns (Acanthaster planci) photo by jon hanson

The crown-of-thorns starfish (or “sea star”), Acanthaster planci takes the form of a spiked disk with up to 21 prehensile arms (also covered in spines). On its underside, the starfish has numerous sticky tube-like suction feet running along the bottom of each arm. These legs run in parallel rows beside a series of closely fitting plates which form a central groove on the bottom of each arm.  The arm grooves each run ominously into the starfish’s horrifying stomach/mouth.  The starfish can grow to a diameter of up to 80 centimeters (31 inches) although they are more commonly found in the 35 centimeter range.  Acanthaster planci has a wide Indo Pacific range and lives in tropical and semitropical coastal waters from the Red Sea and the East Coast of Africa across both the Indian and Pacific Oceans all the way to the West Coast of Central America.  The starfish are usually dull grays and reds but they can range to brilliant purple, blue, orange, aqua (or display all sorts of mixed ranges). Their colors are highly mutable and variable! crown-of-thorns-starfish These starfish eat coral polyps!  It crawls into corals by means of its many sucker feet—compressing or elongating its body as needed.  When in position the starfish extrudes its stomach over the polyps it wishes to eat: the stomach can cover an area approximately equal to the starfish.  The creature then releases digestive compounds which dissolve the soft parts of the coral into a soup which the starfish slurps up.  It then retracts its stomach and moves on, leaving a bleached (i.e. dead) patch of coral skeleton.  A medium sized starfish can consume up to 6 square meters (65 sq ft) of living coral reef per year.  If times are lean the starfish can go for months (or longer) without eating. http://www.arkive.org/crown-of-thorns-starfish/acanthaster-planci/video-00.html Crown-of-thorns starfish are male or female and they do not reproduce by budding, but female starfish lay from 6.5 million to 14 million eggs each per breeding season [hereupon the author wiped his furrowed brow].  When the eggs hatch there are several interesting larval stages which the echinoderm goes through before reaching their adult form.  Suffice to say, the starfish reaches sexual maturity after 2 years and it lives as long as 8 years. Fourteen million offspring per season is a lot!  If predators do not keep the crow-of-thorns starfish in check, they can swiftly overrun entire reef systems and eat all the coral into bleached uninhabitable wasteland.  This leaves all of the multitudinous reef inhabitants homeless.  The reef skeletons dissolve in our newly acidified oceans and one of earth’s most diverse ecosystems becomes a weed-strewn graveyard. The starfish are hard to stop since they are provided with tremendous defenses: each animal is covered with 1-5 centimeter long razor sharp spines which in turn are covered with toxic saponins—soaplike chemicals which interact with cholesterols to tear holes in cell membranes.  The starfish can regenerate arms.  If removed from the water, the starfish develops holes in its body and loses its water, but it can swiftly reconstitute itself if placed back in the ocean.

Crown-of-thorns starfish wash up in Japan (BBC)

Crown-of-thorns starfish wash up in Japan (BBC)

Fortunately there are some tough predators of the crown-of-thorns starfish.  Certain triggerfish, parrotfish, and blowfish can insouciantly crunch through the spines with hardened mouths.  Painted shrimp and polychaete worms can tear off and eat pieces of the starfish until the latter dies (whereupon the impatient scavengers devour the corpse).  Best of all, the magnificent Triton’s trumpet, a huge gastropod mollusk, can rasp the odious starfish to pieces with its sharpened radula and suck up the offending echinoderm!  Unfortunately, the fish are vanishing into the aquarium trade or the soup pot and the tritons have been killed en masse so their shells can be sold to tourists.  This results in a feedback loop wherein the crown-of-thorns devastate a reef to the extent that the predators can not survive at all.  The plague of starfish then descend of virgin reefs and kill them off too.

A plague of crown-of-thorns starfish (Photo: AFP/Getty Images)

A plague of crown-of-thorns starfish (Photo: AFP/Getty Images)

Healthy reefs have a certain ability to fight off the crown-of-thorns star, but today’s reefs are coping with overfishing, invasive creatures, acidification, pollution, and fluctuating temperatures.  The crow-of-thorns is exploting these weaknesses (and the diminished stock of its predators) to run rampant.  Humans have stepped in late to try to kill of the rampaging multi-armed villains, but, for all of our skill at doing in other organisms, we seem to not be very good at killing these fiendish starfish.  They are difficult to rip apart.  They are hard to net or trap.  They are surprisingly resistant to punctures.  Recently divers have had success suppressing infestations by injecting the starfish all individually with sodium bisulphate (which echinoderms and my great uncle cannot abide, but which is relatively harmless to most other lifeforms).   Obviously this is an expensive and labor intensive solution (although if somebody wanted to hire me as a starfish bounty killer, I would not decline).

New frontiers of pest control (via DIVE QUEENSLAND)

New frontiers of pest control (via DIVE QUEENSLAND)

The common name of the crown-of-thorns starfish is a reference to Christian mythology.  One of the tortures endured by Jesus was a crown woven of thorns (which pierced his temple and hurt him while simultaneously mocking his alleged crime—pretending to the throne of Judaea).  Throughout Christian art, the crown of thorns is the supreme crown of the king of kings which he wears during the passion or as he harrows the underworld.  The voracious starfish earned its sobriquet not by godliness, but by looking like a horrible alien crown made of thorns (and arguably also by bringing death and devastation to coral reefs).  I find it to be one of the most poetic and horrifying common names in all of taxonomy—and as the starfish destroys ecosystem after ecosystem, it seems fully earned.

A giant triton snail feeding on crown-of-thorns starfish. Image supplied by Australian Institute of Marine Science

A giant triton snail feeding on crown-of-thorns starfish. Image supplied by Australian Institute of Marine Science

Today’s post concerns an unlikely ally—an eccentric friend you have most likely maligned (perhaps even to the point of death).  How eccentric is this unknown benefactor?  Well let’s just say our little comrade has up to 30 legs and likes to run on the ceiling—so, pretty eccentric.

No! The Italian soccer team is creepy and has many legs but it doesn’t run on the ceiling and it isn’t our friend.

I’m talking about the common house centipede (Scutigera coleoptrata), a myriapod which induces such unreasoning dislike in some people that I am going to avoid describing its extremely interesting physiology, habits, and origin, until after I have told you why you should not promptly step on it.  With its many hairy legs and its ability to swiftly scamper along smooth vertical surfaces, Scutigera has a tendency to alarm people into causing it mortal injury.  You should never do such a thing!  Scutigera is a relentless predator of bedbugs, roaches, termites, ants, silverfish, spiders, and fleas.  The house centipede is like a tiger to these truly annoying and dangerous vermin.  If you live in a large city it is entirely possible that your dwelling has been saved multiple times from horrible infestations by unloved house centipedes.

House Centipede (Scutigera coleoptrata) facing to the left of the page

Scutigera coleoptrata grows to be 25 mm (1 in) to 50 mm (2 in) in length.  They originally lived in the Mediterranean area, but they are successful and hardy and have quickly spread to all six temperate continents as humankind has moved around and built houses.  Scutigeras live up to seven years, so before you crush one, you might pause to reflect that it might have lived in your house longer than you have.

House Centipede (Scutigera coleoptrata)

You have probably seen a Scutigera running.  They move with preternatural agility and are capable of running upside down.  If you can divorce yourself from vertebrate-centric feelings of revulsion, you will see an amazing beauty to the rippling motion of their many legs.  They always remind me of little Venetian galleys or Byzantine dromons.  Like those warships, house centipedes are designed to be formidable. Perhaps we would appreciate them more if we saw the ninjalike grace with which they hunt.  They usually jump on their prey and sting it to death with modified front legs capable of delivering venom (evolutionarily unique appendages called forcipules), however they are very nimble and can also lasso smaller arthropods or whip them into submission with their many legs.  The forcipules of the house centipede are usually incapable of breaking human skin. If they do succeed in stinging a person (which they don’t undertake lightly–since we are the size of skyscrapers to them) the sting is usually no more painful than that of a bee.  Unfortunately a few people are allergic to centipede venom and can have dangerous reactions, so it is best not to handle them.

I said not to handle them!

Scutigera apprehends the world through compound eyes which can see visible light but are even better at viewing ultraviolet wavelengths.  Despite their acute vision, they tend to hunt with their long antennae which are extremely sensitive to both vibrations and smells.  Their elongated hindlegs have evolved to appear like antennae so that predators have a difficult time telling which direction a centipede will move in, but hopefully I have convinced you to leave them alone so they won’t have to run away from you. More house centipedes mean fewer bedbugs!

Ye Olde Ferrebeekeeper Archives

July 2020
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031