You are currently browsing the tag archive for the ‘neighboring’ tag.

Longtime readers will know that Ferrebeekeeper eschews the popular fascination with Mars in favor of our much closer sister planet, the luminous Venus. Therefore, I was delighted to see the second planet from the Sun making front page headlines around the globe (of Earth) this week when scientists discovered traces of phosphine gas in the strange, dense Venusian atmosphere.

The internet tells us that phosphine is a colorless, flammable, very explosive gas which smells like garlic or rotten fish. Additionally, it is extremely toxic. This stuff is not exactly the must-have gift of the season (well…maybe for Christmas, 2020), so why am I so excited to find it on a planet which may be the best option for an off-world human colony?

Phosphine exists on Earth where it is produced by the decomposition of organic matter in oxygen-free conditions (it is also a by-product of certain kinds of industrial processes). This means that the only known methods of producing phosphine involve living things (I suppose industrialists and anaerobic bacteria both qualify as such). It may well be that phosphine is produced on Venus due to some quirk of the planet’s strange atmosphere or weird volcanism (which is not well understood and seems to be fundamentally different from that of Earth).

In the past we have explored some compelling yet inconclusive evidence of life in the clouds of Venus. Today’s news adds to that evidence, but is still not compelling. The phosphine gas and the cloud bands both demands further study, though (and if we happened to learn more about the opportunities for cloud cities, so be it). I have long thought that a robot blimp probe of Venus’ clouds is the most rational next exploration mission for NASA (no matter how much I love super rovers). Perhaps the phosphine revelation will bring other people closer to this view. Maybe you should drop a quick email or phone call to your favorite elected representative about that very thing (or you could always write Jim Bridenstein–he is the rare Trump appointee who seems to be basically competent).

Speaking of basic competence, I was sad to see many of the liberal arts enthusiasts on my Twitter feed angrily denouncing this discovery and demanding “no more money for space!” (I unfollowed them all, by the way–sorry poetry). Beyond the fact that this discovery was made here on Earth by a clever lady with a simple telescope and a gas chromograph, money spent on space exploration is spent here on Earth. Such expenditures further fundamental discoveries in material science, engineering, aerospace, robotics, and other high tech disciplines. Our world of high tech breakthroughs, the internet, super computers, solar power, nanotechnology, and super safe aviation (among many other things) was made possible by government money spent on space exploration (or did you think some MBA guy running a private company would ever think more than one quarter into the future?). Beyond these reasons though, Venus was once the most earthlike of all other Solar System planets. Long ago it almost certainly had warm oceans teeming with life. Uh, maybe we should have a comprehensive answer about what happened there before we say that government money should only be spent on social initiatives. If you came home to your nice row house and noticed that the house next door had been knocked down, the neighbors were gone, and also the temperature there was 470 degrees Celsius (880 degrees Fahrenheit) and the sky replaced with sulfuric acid, maybe you would ask what happened! (although, to be fair, that very thing seems to be happening now in California, and a substantial number of people say “science has no place in understanding this).

Anyway, commentary about earth politics aside, I continue to be more and more excited about our closest planetary neighbor. Seriously, can you imagine how cool a robot probe-blimp would be?

Previously discovered dwarf satellite galaxies (in blue) and the newly discovered candidates (in red)  (Yao-Yuan Mao, Ralf Kaehler, Risa Wechsler (KIPAC/SLAC))

Previously discovered dwarf satellite galaxies (in blue) and the newly discovered candidates (in red) (Yao-Yuan Mao, Ralf Kaehler, Risa Wechsler (KIPAC/SLAC))

We have some new galactic neighbors! Well, actually maybe “new” is not the right term: they have been there for a long time but we only just now noticed. Astronomers are reporting the discovery of nine dwarf satellite galaxies orbiting the Milky Way like remoras stuck to a cosmic shark. These nine miniature galaxies are additional to the well-known Large and Small Magellanic Clouds—two dwarf galaxies which are located right next to the Milky Way (being respectively 160,000 and 200,000 light years away).

The new dwarf galaxies were discovered by a team of astronomers poring over data recovered from the Dark Energy Survey (a super-high resolution digital array which is part of the Victor M Blanco telescope in the Andes). The closest is a mere 97,000 light years from the Milky Way whereas the farthest lies 1.2 million light years away from us. The dwarf galaxies are a billion times fainter than the Milky Way. They are made up of millions (or hundreds of millions or even billions) of stars but are insignificant in size compared to the hundreds of billions of stars which constitute a true galaxy. Scientists believe that there are hundreds of similar miniature galaxies and pseudo-galaxies near the Milky Way, but they are dark and difficult to find (comparitively speaking).

The Large and Small Magellanic Clouds, near which the satellites were found. (image from European Southern Observatory)

The Large and Small Magellanic Clouds, near which the satellites were found. (image from European Southern Observatory)

I have been saying “dwarf galaxies” because I like the way it sounds (like the new galaxies live together in the woods in a little hut and work in the mines!), but actually only three of the new companions are definitely dwarf galaxies. The remaining six structures may be dwarf galaxies or they may merely be globular clusters—a far less euphonic phrase which indicates a group of stars which orbits a galactic core as a satellite. Unlike globular clusters, dwarf galaxies are held together by the gravitational mass of large quantities of dark matter (um, assuming it actually exists). Indeed dwarf galaxies seem to contain far greater quantities of dark matter than actual galaxies. This makes the newly discovered galactic neighbors a potentially useful focus for studying the properties of dark matter and refining our model of the universe.

Ye Olde Ferrebeekeeper Archives

September 2020