You are currently browsing the tag archive for the ‘honeybees’ tag.

Carnival-colored Honey (Photograph by Vincent Kessler, Reuters)

Carnival-colored Honey (Photograph by Vincent Kessler, Reuters)

In October of 2012, Beekeepers in Ribeauville (a town in the Alsace region of France) were shocked to find that bees were producing vivid green and blue honey.  The hard-working insects were not mutants or abstract expressionists.  They had apparently found a source of colorful sugars which they pragmatically incorporated into their preparations for winter.

It works surprisingly well as a vivid abstract work made with mixed media.

It works surprisingly well as a vivid abstract work made with mixed media.

Shocked by the unnatural shades of the sweet honey, the town’s apiarists combed the local countryside until they found the apparent source—M&M candy fragments.   A local biogas plant (a sort of industrial recycling plant) was processing candy fragments from a nearby Mars Candy plant.  The adaptable bees discovered barrels filled with the sugary waste and began converting it to honey and stocking up their honeycomb.  French law however is stern concerning what constitutes saleable honey (honey must be transparent to brown & produced from plant products) so the wacky carnival honey will never see market.  Additionally workers at the biogas plant have enclosed all the candy dust so that the industrious insects don’t take over their jobs.

Artist's Impression

Artist’s Impression


Honeybee on a Cherry Blossom by digiphotolover

Since 2006, beekeepers in Europe and North America have been reporting mysterious mass die-offs of honeybees.  Although this has been a problem which has sometimes affected beekeepers in the past, the worldwide scale of beehive failures subsequent after 2006 was unprecedented.  Worldwide bee populations crashed.  Since bees are directly responsible for pollinating a huge variety of domestic crops–particularly fruits and nuts—the threat to our food supply and agricultural base extended far beyond the honey production which people associate with bees.  An entire community of free-wheeling apiarists came into the limelight.  For generations these mavericks would load up their trucks with hives of bees and drive to orchards in bloom.  For the right…honorarium…they would release the bees to pollinate the almonds, broccoli, onions, apples, cherries, avocados, citrus, melons, etcetera etcetera which form the non-cereal base of the produce aisle (as an aside, I find it fascinating that there is a cadre of people paid to help plants reproduce by means of huge clouds of social insects—if you tried to explain all this to an extraterrestrial, they would shake their heads and mutter about what perverts earthlings are).

A truck of bee hives to ensure that food crops are pollinated

As bees have declined, honey has naturally become more expensive, but so too have a great many other agricultural staples.  Not only has the great dying hurt farmers and food shoppers it has also affected entire ecosystems—perhaps altering them for many years to come.  “Pollinator Conservation” (an article from the Renewable Resources Journal) opines that “Cross-pollination helps at least 30 percent of the world’s crops and 90 percent of our wild plants to thrive.”

Scientists have been rushing to get to the bottom of this worldwide problem, pointing fingers at varroa mites (invasive parasitic vampire mites from China), pesticides, global warming, transgenic crops, cell phone towers, habitat destruction, and goodness knows what else.  The lunatic fringe has leaped into the fray with theories about super bears, aliens, and Atlantis (although I could add that sentence to virtually any topic).  So far no theory has proven conclusive: exasperated entomologists have been throwing up their hands and saying maybe it’s a combination of everything.

An extremely cool illustration of Imidacloprid acting on insect nerves from Bayer (the original inventor/patent holder of the compound)

Yesterday (March 29th, 2012) two studies released in “Science” magazine made a more explicit link between colony collapse and neonicotinoid insecticides.  The first study suggested that hives exposed to imidacloprid (one of the most widely used pesticides worldwide) produced 85% fewer queen bees than the control hives.  The second study tracked individual bees with radio chips (!) to discover that bees dosed with thiamethoxam were twice as likely to suffer homing failure and not return to the hive. Suspicion has focused on neonicotinoid poisons as a culprit in hive collapse disorder for years (the compounds were hastened into use in the nineties because they were so benign to vertebrates), however the rigorously reviewed & carefully controlled studies in “Science” bring an entirely new level of evidence to the problem.  Unfortunately this also brings a new variety of problems to the problem, since neonicotinoids are tremendously important to agriculture in their own right (sorry Mother Earth) and since they are such handy poisons for, you know, not killing us and our pets and farm animals.

A Honeybee Drone

Even though honey bees they mimic humans in some ways (for example with their rigidly hierarchical hive organization), they are alarmingly alien in many respects.  Nowhere is this more in evidence than in the lives of honeybee drones—the male bees which play a role in reproduction but are otherwise alarmingly superfluous to the workings of a bee hive.

Drones are born from unfertilized eggs either laid by queens or by laying worker bees (which can only lay drones).  Because the drones develop from unfertilized eggs they have only one set of chromosomes (a reproductive process known as arrhenotokous parthenogenesis) and each drone produces genetically identical sperm. A fertilized queen can lay female worker bees which have two sets of chromosomes (diploid).   Worker bees are extremely closely related as sisters since they share identical genetic information from the father (as opposed to most other animals where male sex cells are not all genetically identical).

Drones do not posess stingers and can be safely handled.

Drones are different in appearance from female bees.  They are slightly larger than worker bees but smaller than the queen.  They have extremely large eyes, perhaps to help them find a queen while flying.  Additionally, drones lack stingers (which are really modified ovipositors and thus unique to female bees). Drones from different hives congregate at certain locations not far from a given hive (it is unclear how they choose or mark these locations).

Drones do not engage in the useful toil so characteristic of the workers.  Male bees do not gather nectar & pollen, take care of larvae, or build the hive.  Lacking stingers, they do not act as soldiers.  Their only purpose is to mate with a queen—though only one in thousands will fulfill this destiny.  Mating is accomplished in midair and proves fatal to the drone.  His reproductive organs break off inside the queen and the contusion proves mortal.  Drones have no place in an austere winter beehive.  As winter approaches in cold weather locations, worker bees cast all of the drones out of the hive to perish.

Honey Bee (Apis mellifera)

Out of all the hymenoterans, Ferrebeekeeper has been looking forward to writing about honey bees.  Not only is honey delicious (and the striped workaholic insects strangely endearing), but honey bees have one of the most successful colony systems extant.  As noted in a previous post, a hive of honey bees is a conundrum—is it 50,000 souls working together in a city state or is it one living organism?  Unfortunately, as one reads through the writings by beekeepers, one realizes that it is not easy to answer this question—or even to write a short essay concerning honey bees.  Their societies are too complex to be readily summarized.  Writing about a hive of honey bees really is like writing about the myriad affairs of a city-state.  The bees forage in different locations, store their produce in different forms, build structures, establish castes, fights wars, and undergo succession crises.

All of that is true during the warm part of the year. As temperatures drop to around 20° Celsius (50° Fahrenheit), things change a great deal within the hive.  Honey bees do not hibernate like bears (or like bumblebees which also snuggle down in a little lined den) instead they use honey stores and teamwork to stay warm.  Honey bees do not have internal warming mechanisms like mammals, but they have each other and they have powerful wing muscles.  The bees cluster together into a ball with the queen at the middle.  Worker bees close to the queen shiver their wing muscles and thereby generate heat.  Workers at the outside of the ball act as insulation (and benefit from transferred heat).  If the ball becomes too hot it expands outward and the space between bees allows heat to escape.  If it becomes too cold the bees press inward.  Tired workers move towards the outside of the ball where they can be inert whereas cold workers on the outside move towards the inside.  You might notice I am only writing about female bees—the workers and the queen—this is because all of the male drone bees are regarded as expendable and are thrown out of the hive to die in the cold as soon as temperatures drop.

In the beginning of the cold season  the queen is not laying eggs (broodless) and the temperature within the cluster is about  27 °C (81 °F), however as spring nears a new brood of workers is needed and the interior temperature of the cluster rises to 34 °C (93 °F) in order to make egg-laying possible.  Hives with too few bees can not stay warm this way and they perish in cold winters, however adequately large hives with ample honey reserves can survive temperatures which dip deep deep below freezing. Even in large well-provisioned hives there are winter dangers though.  Moisture can build up in heavily insulated hives and form icicles which subsequently drip down on the bees in non-freezing weather and chill them (or burden them with fungi).  And prolonged deep cold can prove disastrous. The bees congregate around a single honey store when the temperatures are extremely cold and then they spread out and move to another honey deposit when the weather is better.  If the weather stays too cold for too long they deplete all of the honey and freeze—inches from abundant supplies of life-giving honey.

An Iridescent Wasp on a Linen Tablecloth

Today I would like to start a brand new animal category concerning the most gifted of the social insects, the superorder Hymenoptera, which consists of wasps, bees, ants and sawflies (along with some other oddballs which are less frequently mentioned).  Hymenoptera are arguably among the most successful creatures on the planet.  Their behavior can be almost embarrassingly humanlike and they are famous for building elaborate constructions, going to war, taking slaves, farming fungi, and crafting rigid city-like social hierarchies. However, of all life forms on earth, the hymenoptera are some of the most vividly alien: cuttlefish do seem downright cuddly when compared to the horrifying digger wasps.   A sociologist could happily draw parallels between a bee hive and a city until he looked at the details of bee reproduction, at which point he would probably break down and weep.

The Hymenoptera are not as ancient as either the mollusks or the mammals (if it is fair to compare an order with a phylum or a class).  They originated in the Triassic and did not develop the successful social organization which is now such a defining feature until the late Cretaceous.   The first hymenopterans were the xylidae, a family of sawflies with a minimal presence on earth today but with a long pedigree. These first sawflies fed on the pollen and buds of the conifer stands beneath which the first dinosaurs developed (and under the roots of which the first mammals cowered).  The rise of the flowering plants in the Cretaceous led to a leap-forward for these pollen-eaters: complex flowers then evolved in tandem with the hymenopterans. It was also during the Cretaceous that the ants and termites split from the vespoid wasps.  The earliest honey bees of the familiar genus Apis evolved at the end of the Eocene bt they were preceded by all sorts of hymenopteran pollinators.

A Sawfly Fossil (Hymenoptera: Symphyta)

I mentioned above that, for all of their familiarity to us, the Hymenoptera are disturbingly alien.  In fact as I have been writing this comparatively tame post, a dreadful sense of formication has stolen over me and I find myself brushing phantom ants from my limbs and feeling the terrible pang of yellowjacket stings from childhood.  The hymenoptera are frequently the basis of the extraterrestrial enemies in science fiction.  Although people are occasionally stung to death by wasps or ripped apart from within by driver ants, it is something larger and less tangible which makes the hymenoptera such reliable villains. I have watched the soldier bees snip the wings off of wasps trying to invade my grandfather’s bee hive and then toss the invaders’ writhing bodies from the painted ledge—all while a river of worker bees went out and came back laden with pollen.  There is an alarming touch of civilization to these social insects: a hint that they are utilizing the same kinds of organization and communication which have made humans such a success.  And, in fact, the social insects are a huge success—ants alone are estimated to constitute a substantial portion of the animal biomass of earth (to say nothing of termites, bees, wasps and the rest).

Yellow Jackets on a Coke Can (photo by the fearless Alan Cressler)

Of course this success has broad ramifications. The hymenoptera are everywhere in nature and they also play a huge part of human culture. Indeed the very name of this blog is a play on words between my surname and the noble art of aviculture.  Without the bees, we would not have much in the way of fruit or vegetables.  Not only would this be a disaster for human farming—just contemplate how many other creatures rely on those fruit!  Similarly the ants bulwark an entire portion of the ecosystem by scavenging the tidbits out of fields and forests.  Writing about the hymenoptera may be an itchy, antsy business but it is a well-merited study.  This group of insects is pivotal to life on dry-land as we know it.  The biblical promised land was one of milk and honey.  There would be no milk without mammals, but there would be no honey (and precious few mammals) without the hymenoptera.

A beekeeper completely covered with swarming honey bees in a “bee man” cantest in China

Ye Olde Ferrebeekeeper Archives

July 2020