You are currently browsing the tag archive for the ‘alien’ tag.

Nightjar (Wayne Ferrebee, 2015, color pencil and ink)

Nightjar (Wayne Ferrebee, 2015, color pencil and ink)

It is 11:00 PM on Friday night after a long week and I have no blog post written.  You know what that means! It’s time to take out my little book and post some of the frivolous sketches which I do on the train or at lunch.  Since it is October and we are approaching the scary Halloween feature week, I have been doing some creepy otherworldly little drawings.  Above is a nighttime laboratory with two mad scientists hard at work doing some transgenic modifications to various organisms.  Ethereal spirit people drift by outside beneath the cold stars and various beasts and plants inhabit the spaces of the Gothic room not taken up by weird lab apparati.   The seated scientist bears a striking resemblance to a particular Abrahamic deity, but perhaps he is just playing god (not that there is anything wrong with that).  Only when I was done with the picture did I realize that the second scientist bears a striking resemblance to Rick from Rick and Morty (do you watch The Adventures of Rick and Morty? You should!).

Little Glowing Man in Pod (Wayne Ferrebee, 2015, colored pencil and ink)

Little Glowing Man in Pod (Wayne Ferrebee, 2015, colored pencil and ink)

In the second drawing, a little glowing man in a hyperbaric pod lands on a strange world as a many limbed beast cavorts atop his craft.  The fronds of the creature’s vegetative back are a refuge for tiny green elf-like beings.  A pulpy red sphere with a green top in the foreground may be a tomato…or a larval version of the creature.  There is really nothing more to say about this image.

Strange Ocean World (Wayne Ferrebee, 2015, colored pencil on paper)

Strange Ocean World (Wayne Ferrebee, 2015, colored pencil on paper)

Well…it was another day that got away.  What with work and dinner and the grind, I failed to write about beaked whales.  Don’t worry: those magnificent diving experts cannot escape our pen forever, but, in the interim, we must fall back on my daily doodle book (which Ferrebeekeeper cognoscenti know is a little moleskine sketch book that I carry around and draw in during my spare time).  I have a big sarcophagus-shaped pencil tin too—which is full of colored pencils and markers to bring my drawings to life.  The first sketch however (above) only required one “Blue Denim” colored pencil.  It’s a little unclear, but I think it is a picture of the future oceans filled with bathyspheres, synthetic ocean life (to replace the fish we are recklessly killing off), and ships driven by fanciful propulsion.  Synthetic beings and post-humans fly through the weird clouds of this strange ocean world.  In fact, maybe it’s not Earth at all, but somewhere else entirely—an ocean world of oddly familiar alien marvels.

City with Glowing Crystal (Wayne Ferrebee, 2015, ink on paper)

City with Glowing Crystal (Wayne Ferrebee, 2015, ink on paper)

Next is another troubling pastiche of nature and technology.  A happy monster ambles by a shambling city while a gambling demon tosses dice at a magic crystal.  Reptiles and weeds fill up the foreground as strange elongated opossums creep in from the sides.  It’s just like now!  This might as well be a CNN photo about the 2016 election.  This image may need to be colored in.  What do you think?

Succulent Fruit (Wayne Ferrebee, 2015, Colored Pencil and Ink on paper)

Succulent Fruit (Wayne Ferrebee, 2015, Colored Pencil and Ink on paper)

Finally, thanks to enthusiastic comments from my favorite readers, I included more fruit.  One of my tasks at my new day job is overseeing the fruit supplies for a big office full of desk jockeys who spend all day looking at important documents.  Because of ancient precedent, almost all of the fruit is bananas, and my colleagues beg piteously for different fruit.  I have provided their wants…in this fantasy drawing which shows a succulent world of juices, seeds, and glowing tutti-fruit color. It could also be that there is a statement here about our world of agriculture, selective breeding, transgenic alteration, and over-consumption…or possibly it is just a fun doodle I made at lunchtime.  As always, thanks for looking at my little artworks. I treasure everybody’s comments (though I realize I have been slower than usual to respond).  Let’s keep enjoying the rest of summer. I’ll keep drawing (and the post about beaked whales will appear soon). Cheers!

The glass squid, Cranchia scabra

The glass squid, Cranchia scabra

The Cranchiidae are a family of squid commonly known as “glass squid” which live in oceans around the world. The squid are of no interest to commercial fisheries (yet) and a great deal about this family remains completely unknown. Most of the 60 known species of cranchiidae are small and inconspicuous–indeed the majority are transparent and thus nearly invisible. However the largest known mollusk, the colossal squid (Mesonychoteuthis hamiltoni), is part of the family, (so it might be wise not to antagonize them on the playground).

Glass Squid (Taonius belone) off Hawaii. Photograph by R. Young.

Glass Squid (Taonius belone) off Hawaii. Photograph by R. Young.

Glass squid are notable for having stubby swollen-looking bodies and short arms except for one long pair of hunting tentacles. The majority of glass squid have bioluminescent organs which they use to hunt, to communicate and to disguise the faint shadows cast by their transparent bodies (predators of the deep can see even the faintest shadows cast by the dim light from the surface). The cranchiid squids themselves sport a variety of interesting and complex eyes which range from giant circular eyes to stalked eyes to telescoping eyes.   This little gallery shows how delicate, diverse, and beautiful (and how utterly alien) these squid can be.

Banded Piglet Squid (Helicocranchia pfefferi) photo by keyofv

Banded Piglet Squid (Helicocranchia pfefferi) photo by keyofv

Bathothauma lyromma (note eyes on stalks!)

Bathothauma lyromma (note eyes on stalks!)

A drawing of the piglet squid (Helicocranchia pfefferi)

A drawing of the piglet squid (Helicocranchia pfefferi)

Sandalops melancholicus by Chun Carl

Sandalops melancholicus by Chun Carl

Teuthowenia megalops

Teuthowenia megalops

Cranchia scabra

Cranchia scabra

Juvenile cranchiid squid are part of the plankton and live near the surface where they hunt microscopic prey while trying to avoid thousands of sorts of predators. As they mature, they change shape and descend to deeper waters—indeed some species become practically benthic and can be found more than 2 kilometeres under the ocean. Glass squid move up and down the water column by means of a fluid filled chamber which contains an ammonia solution (which maybe explains why they are not on the human menu yet).

Belonella belone

Belonella belone

jcosmosWhen I was a child, my favorite tv show was Carl Sagan’s Cosmos.  Although the good doctor’s naïveté about cold war politics sometimes dismayed my realpolitik-minded parents, the amazing breadth of his show’s exploration of the natural world–and the wider universe beyond–was a wonder to me.  For the first time I was introduced to quasars, pulsars, and stellar aging. From Sagan’s delightfully filmed documentary, I learned about Kepler, the Kreb’s cycle, DNA pair sequencing, and the great library of Alexandria.  The eclectic scope of Cosmos was a direct inspiration for this blog (although I can hardly claim to be such a polymath). Hopefully the new Cosmos–with a new science hero, Neil deGrasse Tyson–will inspire today’s generation of children to look beyond sports and the internet up to the soaring science of the firmament!

Jovian Life Envisioned by Adolf Schaller for COSMOS, Carl Sagan (1980)

Jovian Life Envisioned by Adolf Schaller for COSMOS, Carl Sagan (1980)

My very favorite segment of Cosmos however, did not involve real science at all, but rather airy speculation about extraterrestrial life on a gas giant planet.  Carl Sagan, his physicist colleague, E. E. Saltpeter, and the space artist, Adolf Schaller, worked together to imagine a floating ecosystem which might exist on a planet such as Jupiter. In the tempestuous atmosphere of such a world, ammonia, hydrogen, methane, and water are violently stirred together to form organic molecules.  Small drifting organisms might feed on these compounds and reproduce as lighter spores before air currents bear them down to their doom (in a cycle reminiscent of phytoplankton). Giant floating life-forms like living hot-air balloons would stay in the habitable zone of the atmosphere by photosynthesis or by grazing on the microscopic “plankton”.  These beings could be kilometers in diameter and would congregate in vast aerial schools.  Sagan and Saltpeter even envisioned jet-propulsion super predators which would blast through the alien skies feeding on the huge clouds of “floaters”.


It is a tremendously compelling vision! Now, whenever NASA or ESA releases a new list of exoplanets, I pause to wonder whether such alien creatures are actually found floating on the super-Jupiters and strange giant worlds which orbit far-off stars.  However today I would like to present an even more fantastic vision—and one which humankind could actually create!  By combining Sagan’s imaginary vision with contemporary aerospace and biotech research, it is possible to visualize my own fantasy of human colonization of Venus…or even upon other worlds with complex atmospheres.

Ornithopter based on Jellyfish (Dr. Ristroph and Dr. Childress)

Ornithopter based on Jellyfish (Dr. Ristroph and Dr. Childress)

Just this year, two aeronautical engineers, Dr. Ristroph and Dr. Childress, crafted an ornithopter based on the swimming motion of a jellyfish.  The tiny mechanism relies on four teardrop-shaped wings oriented around a dome-like apex to achieve stable, directed flight. At the same time a new array of futuristic blimps, zeppelins and dirigibles are being brought to market to transform the skies of earth.  Most importantly Craig Ventner, the bioengineer-entrepreneur, is out there sampling the esoteric genetics of the deep ocean and forging ahead with synthetic genomics (which is to say he is building new living things from scratch).  In our lifetime someone will figure out how to meld Ventner’s synthetic organisms with the advanced engineering and technology which are the hallmark of our age.  The possibilities then grow exponentially out of this world.

“Space Zeppelin” by Rugose.

“Space Zeppelin” by Rugose.

Imagine if the floating ecosphere invented by Sagan and Saltpeter were instead a floating society-economy based on advanced engineering and bioengineering.  There would be levitating cities which are also bioengineered life-forms (like the vast balloon beings of Sagan’s invention).  Between these cloud cities would fly flocks of tiny ornithopters that would gather resources for further farming/engineering.

TSWScreenshot96
Jet propelled aircrafts and super habitats would zip between the living arcologies.  Armored crawlers would inch through the deeper layers of atmosphere or creep along the molten pressurized ground. Eventually there might be flying bio-colonies which self arrange out of many highly specialized flying zooids—like the siphonophores which are so prevalent in our oceans! These collective entities would act as sky factories to build an ever more symbiotic and efficient synthetic ecosystem. Humankind, living things, and technology would no longer be at odds but would grow together to form the ideal world of tomorrow.  Life, beautiful and united would expand to new planets and develop into a stronger, brighter presence in the cosmos.

Siphonophorae (Ernst Haeckel, 1904, plate 7 of "Kunstformen der Natur")

Siphonophorae (Ernst Haeckel, 1904, plate 7 of “Kunstformen der Natur”)

62_69_22_earth-lineup_labels

Exciting news from the heavens!  Today NASA has reported that the Kepler mission has discovered 3 new planets in the habitable zones of two distant stars.  Of the thousands of worlds so far discovered, these three are most likely to be habitable.  Best of all the planets are crazy!

Kepler is a NASA space telescope which was launched on March, 2009.  It makes use of an incredibly sensitive photometer to simultaneously & incessantly monitor the brightness of over 150,000 nearby stars.  The brightness of a star dims slightly whenever an exoplanet transits between it and Kepler.  Thanks to Kepler’s inhuman vigilance and robotic ability to perceive nearly imperceptible light changes, we are now discovering thousands of new planets, although most of them are Jovian sized gas worlds.

Kepler Space Telescope

Kepler Space Telescope

The three worlds reported today lie in the habitable zone—the region around a star where water exists in a liquid form (as it does here on beautiful Earth).  Two of the newly discovered habitable zone planets are in a five planet system orbiting a dwarf star just two-thirds the size of the sun which lies 1,200 light years from Earth.   Here is a diagram of the Kepler 62 system.

Kepler 62 System (Art by NASA)

Kepler 62 System (Art by NASA)

Of these five worlds, two lie in the habitable zone, Kepler 62f and Kepler 62e.  Kepler 62 F is most likely a rocky planet and is only 40 percent larger than Earth.  It has an orbit which last 267 (Earth) days.  So far it is the smallest exoplanet found in the habitable zone.  The star it orbits is 7 billion years old (as opposed to the sun which is four and a half billion years old) so life would have had plenty of time to develop.  The other habitable zone planet in the Kepler 62 system, Kepler 62e is probably about 60% larger than our planet.   It is somewhat closer to the star and astrophysicists speculate it may be a water world of deep oceans.

No! Not that sort of Waterworld!

No! Not that sort of Waterworld!

The other new exoplanet Kepler-69c appears to orbit a star very similar to Earth’s sun.  It orbits at the inward edge of the habitable zone (nearing where Venus is in our solar system) so it may be hot.  The planet is estimated to be about 70% larger than Earth, and is also thought to be a water world with oceans thousands of kilometers deep.  I am finding it impossible not to imagine those vast oceans filled with asbestos shelled sea-turtles the size of dump trucks, huge shoals of thermophile micro-squid, and burning-hot chartreuse uber-penguins, but if any life is actually on Kepler-69c, it is probably extremely different from Earth life.

I understand why they are green and have gills, but why are they inside gelatin capsules? (DC Comics)

I understand why they are green and have gills, but why are they inside gelatin capsules? (DC Comics)

Of course Kepler can only find these planets; it is unable to observe very much about them.  In order to do that, humankind will need some sort of huge amazing super telescope.  Speaking of which, tune in next week when I write about humankind’s plans for building a huge amazing super telescope in the Chilean Andes!

This week’s posts [concerning translucent sea slugs, wasps named for a crazy pop star, an elusive Indochinese cousin of the cow, and whole sunless ecoystems] have all been about finding new life-forms.  There is, of course, only one place such a topic can ultimately wind up—far beyond the living jungles, azure seas, and swirling clouds of our beautiful home planet, out in the immensity of space where the greatest question of all waits like a magic golden apple spinning in darkness.

Is there life elsewhere?

Unfortunately the current answer is incomplete: all known life–in all of its ineffable variety–is Earth-based…yet the universe is vast beyond comprehension.  So I’m going to mark this down as “probably.”

Chang E and the Lunarians

Many ancient societies reckoned that other worlds existed.  The Norse had their nine worlds joined together by the great ash tree Yggrdasil.  The Chinese had myths about Chang’e and the Jade rabbit on the moon. Even the stolid Christians believe in heaven & hell, which are places filled with intelligent beings that are not on earth (ergo, alien realms somewhere out there in the multiverse).  William Herschel, great astronomer of the Enlightenment, believed that life was everwhere—particularly everywhere in the solar system.

Sigh–those were simpler times…

When humankind entered space age, we used our burgeoning technology to examine the solar system for signs of Sir William’s spacefolk.  Although we did not find the Venusian space hotties we were looking for (dammit), we did discover that among our neighboring planets, there are several other possible homes for earthlike living things.  The cloud tops of Venus are inviting and could host bacteria-like life (although I hope not, since I want us to build a second home there).  For centuries, scientists and fabulists speculated about life of Mars.  We now know that the Martian magnetosphere died and the planet’s atmosphere was swept away, but perhaps there are some hardy extremophile bacteria living in the Martian rocks somewhere.  It’s a sad scenario to imagine them on their dying world—like little kids left in a bathtub going cold.  Certain moons of Jupiter & Saturn seem to be the real best bet for life in the solar system.  The Jovian moons Europa, Ganymede, and Callisto are all believed to have extensive liquid oceans beneath their crust.  Likewise the Saturn moons Titan and Enceladus are believed to have subsurface water. The discovery of life on Earth which did not directly require photosynthesis (like the cold seeps from yesterday’s post) has given scientists hope that bacterial mats—or maybe something even more advanced–exists on one of these moons.

So maybe there are some bacteria analogs or conodont-like creatures squiggling around in some cranny of the solar system.  Perhaps life takes on an unknown form and we already flew over a clever, good-hearted ammonia-based life form on Enceladus (which NASA analysts then promptly dismissed as a snowbank), but I doubt it.  The true answers to the questions about life lie out there among the stars.  Exoplanets are being discovered at a tremendous rate and everyone hopes that some of the more earthlike examples harbor life.  Unfortunately our technology is nowhere close to being able to spot the planets themselves and gauge whether life is there by means of spectrograph.  We are stuck waiting for peers who are either broadcasting radio signals or screwing around with the fundamental nature of existence in such a way that would bring them to our attention.  Indeed as humankind’s technological savvy grows, scientists are looking for more sophisticated signs of advanced life such as black holes of less than 3.5 solar masses or sophisticated particle radiation which could only be created (or detected) by civilizations of huge sophistication.  All we can say right now is that, after a hundred years of looking, we have not found a lot of radio chatter in our neck of the galaxy—which is an answer of sorts itself.

Perhaps we are among the first sentient beings in this area of space (or anywhere, for that matter).  The first generation of stars had to live and die before there were any raw materials for chemically based life. It took billions of years to get where we are, and, despite a few perilous missteps and accidents, life on Earth has been lucky.  In my opinion some of those planets we are discovering are almost certainly covered with microbial life, but not many have little green scientists in many-armed lab coats firing up their radio telescopes (or forging little suits of chain mail a few hundred years behind us).

The Arecibo message as sent 1974 from the Arecibo Observatory.

In writing about the Curiosity rover, I humorously mentioned how much it looked like the aliens from golden age science fiction. It seems we are also broadcasting retro style messages to the stars.  Above is the print-out version of the Arecibo message—one of the loudest broadcasts we have sent.  It’s like a macramé knitted by Dr. Zoidberg’s great aunt or a valentine from Atari’s space invaders! Imagine if you pointed your radio telescope at the heavens and received a message like that!  Maybe the aliens are scared of us or maybe they don’t want to talk to a species with such homespun tastes!

Some day in the future (artist’s interpretation)

So, after the whole post we are no closer to knowing if there is life in the cosmos, but what did you expect?  Did you think I would tell you some secret here before you saw it blaring out of every news station on the planet? [If you did think that, then thank you so much!]  I believe that extraterrestrial life is out there.  I even believe that intelligent extraterrestrials are out there, but the universe really is ridiculously, ridiculously vast.  It’s going to take a while to find our fellow living beings.  In the mean time have faith (which is not advice I thought I would be giving) and keep looking up at the cold distant heavens.

Life around a Cold Seep

This week Ferrebeekeeper has been concentrating on the theme of discovering new life—a search which is very much ongoing even in today’s used-up overpopulated Anthropocene world.  This concept has taken us to the mid levels of the ocean and the mountain jungles of Thailand and Vietnam to encounter species unknown (like this mystery sea slug, the tiny parasitoid wasp, and even a large hoofed mammal). However what is even more shocking is that our world features entire ecosystems rich with life that have only just been discovered.

A photograph of a pool of brine on the bottom of the ocean

A cold seep is an ecosystem on the bottom of the ocean formed around hydrocarbon-rich fluids which seep out of the earth and either “bubble up” or pool at the bottom of the ocean.  The geography of such areas is alien to our perceptions: black pools of asphalt, barite chimneys, and undersea lakes of dense brine (which traps hydrocarbons and sulfites) are surrounded by otherworldly “reefs” of tube worms and benthic mollusks.  The tube worms symbiotically partner with bacteria capable of “feeding” off the hydrocarbons while the mollusks filter feed on the archaeobacteria.   Whole communities of grazers, scavengers, and predators then form around this base.  Such communities are remarkable because they do not rely on photosynthesis as a source of energy and nutrients (much like more famous “black-smoker” ecosystems which are also chemotrophic ecosystems—but which form around hot volcanic vents).  Cold seeps themselves were only discovered in 1983! Now that oceanographers know what to look for, cold seeps are being discovered in locations where we would never have looked for large complicated webs of life.

A Map of the collapsing Larsen Ice Sheet

In 2005, an oceanographic research team studying the seas once covered by the Larsen ice shelf (a melting shelf of ice located off the eastern side of the Antarctic Peninsula) discovered a cold seep community thriving in a glacial trough 850 meters (2,800 feet) beneath the ocean’s surface.  The scientists found great mats of bacteria living on methane.  These bacterial mats were in turn grazed on by strange bivalve mollusks and brittle sea stars.  To quote EOS (a journal of the American Geophysics Union):

These results have implications for the discovery of life in extreme environments, including those found beneath the enormous extent of existing ice shelves and large lakes that lie beneath the Antarctic Ice Sheet. Because of its restricted conditions, the seafloor beneath ice shelves may provide a suitable, widespread habitat for chemotrophic systems; given this, there may be many more such habitats waiting to be discovered beneath existing ice shelves….The seafloor beneath Antarctica’s floatingice shelves covers more than 1.54 million square km [Drewry, 1983], an area of the same order of magnitude as the Amazon basin of Brazil or the Sahara desert.

So science is only just beginning to apprehend the sorts of biomes which are found across huge swaths of Earth.  There are even more remote areas which are wholly unknown—like Lake Vostok, a subglacial lake wholly isolated from the rest of Earth (including the atmosphere) for 15 to 25 million years.  As continental drift and the Antarctic Circumpolar Current froze Antarctica, Lake Vostok was trapped beneath 4,000 m (13,100 ft) of ice, and it has remained so until this year (when an intriguing but sloppy Russian drilling expedition means to pierce the lake).   What scientists discover beneath the other ice dwindling shelves, and what the Russians find beneath the East Antarctic Ice Sheet will have broader implications for how we conceive of life on Earth–and beyond.

A watercolor painting by of chemotrophic life by Karen Jacobsen, an artist who has traveled to the bottom of the ocean via bathysphere to record her impressions!

Mary Magdalene (Carlo Crivelli, ca. 1487, tempera on panel)

Here is another painting by the underappreciated 15th century master Carlo Crivelli (whose enigmatic biography is sketched in this post concerning a beautiful Madonna and Child which he painted around 1480).  Crivelli’s paintings have been called grotesque—and there is no denying that there is something alien, and disturbing—and thrilling–about his works.  Maybe that is why he is so often out of favor in the art world compared to his more admired Quattrocento contemporaries (although his paintings have lingered on for more than half a millenium in our greatest museums and collections).

In this extremely vertical composition, a richly attired Mary Magdalene proffers a golden jar of ointment to the viewer with haughty languor.  With her right hand she lifts the jeweled vessel of salve while her left hand lifts up the pink folds of her exquisite gown. As always in Crivelli’s work, the rich details and dazzling colors pull our eyes around the composition to the weird details.  At the bottom is a garland of dull faced putti with insect wings who rest their heads on elephant-headed vine creatures. Sumptuous flowers with beguiling petals (but grasping roots and piercing thorns) frame Mary’s gilded head.  The overly ornate golden filigree of her chemise resembles fungi and lichen.  Her jewel crusted hair is so perfectly coiffed, it resembles the work of a Etruscan jeweler rather than actual human hair.

The weird details continuously distract us from the crowning achievement of the painting: Mary’s beautiful Byzantine face with sloe eyes, arch brows, and tiny chiseled mouth.  Here at last there is humanity and true beauty, but distorted through the alien  mannerism of the painters of Constantinople (which finally fell to the Turks in Crivelli’s lifetime).  The whole composition reeks with the perfume of unknown realms.  The prostitute who washed Jesus’ feet and dried them with her hair is entirely subsumed by the riches of a fabled past.  Renaissance art turned toward the human, but Crivelli’s heart was always with the Byzantines, looking toward impossible otherworldly splendor.

An Iridescent Wasp on a Linen Tablecloth

Today I would like to start a brand new animal category concerning the most gifted of the social insects, the superorder Hymenoptera, which consists of wasps, bees, ants and sawflies (along with some other oddballs which are less frequently mentioned).  Hymenoptera are arguably among the most successful creatures on the planet.  Their behavior can be almost embarrassingly humanlike and they are famous for building elaborate constructions, going to war, taking slaves, farming fungi, and crafting rigid city-like social hierarchies. However, of all life forms on earth, the hymenoptera are some of the most vividly alien: cuttlefish do seem downright cuddly when compared to the horrifying digger wasps.   A sociologist could happily draw parallels between a bee hive and a city until he looked at the details of bee reproduction, at which point he would probably break down and weep.

The Hymenoptera are not as ancient as either the mollusks or the mammals (if it is fair to compare an order with a phylum or a class).  They originated in the Triassic and did not develop the successful social organization which is now such a defining feature until the late Cretaceous.   The first hymenopterans were the xylidae, a family of sawflies with a minimal presence on earth today but with a long pedigree. These first sawflies fed on the pollen and buds of the conifer stands beneath which the first dinosaurs developed (and under the roots of which the first mammals cowered).  The rise of the flowering plants in the Cretaceous led to a leap-forward for these pollen-eaters: complex flowers then evolved in tandem with the hymenopterans. It was also during the Cretaceous that the ants and termites split from the vespoid wasps.  The earliest honey bees of the familiar genus Apis evolved at the end of the Eocene bt they were preceded by all sorts of hymenopteran pollinators.

A Sawfly Fossil (Hymenoptera: Symphyta)

I mentioned above that, for all of their familiarity to us, the Hymenoptera are disturbingly alien.  In fact as I have been writing this comparatively tame post, a dreadful sense of formication has stolen over me and I find myself brushing phantom ants from my limbs and feeling the terrible pang of yellowjacket stings from childhood.  The hymenoptera are frequently the basis of the extraterrestrial enemies in science fiction.  Although people are occasionally stung to death by wasps or ripped apart from within by driver ants, it is something larger and less tangible which makes the hymenoptera such reliable villains. I have watched the soldier bees snip the wings off of wasps trying to invade my grandfather’s bee hive and then toss the invaders’ writhing bodies from the painted ledge—all while a river of worker bees went out and came back laden with pollen.  There is an alarming touch of civilization to these social insects: a hint that they are utilizing the same kinds of organization and communication which have made humans such a success.  And, in fact, the social insects are a huge success—ants alone are estimated to constitute a substantial portion of the animal biomass of earth (to say nothing of termites, bees, wasps and the rest).

Yellow Jackets on a Coke Can (photo by the fearless Alan Cressler)

Of course this success has broad ramifications. The hymenoptera are everywhere in nature and they also play a huge part of human culture. Indeed the very name of this blog is a play on words between my surname and the noble art of aviculture.  Without the bees, we would not have much in the way of fruit or vegetables.  Not only would this be a disaster for human farming—just contemplate how many other creatures rely on those fruit!  Similarly the ants bulwark an entire portion of the ecosystem by scavenging the tidbits out of fields and forests.  Writing about the hymenoptera may be an itchy, antsy business but it is a well-merited study.  This group of insects is pivotal to life on dry-land as we know it.  The biblical promised land was one of milk and honey.  There would be no milk without mammals, but there would be no honey (and precious few mammals) without the hymenoptera.

A beekeeper completely covered with swarming honey bees in a “bee man” cantest in China

Ye Olde Ferrebeekeeper Archives

April 2017
M T W T F S S
« Mar    
 12
3456789
10111213141516
17181920212223
24252627282930